Tree-State Based Rule Selection Models for Hierarchical Phrase-Based Machine Translation
نویسندگان
چکیده
Hierarchical phrase-based translation systems (HPBs) perform translation using a synchronous context free grammar which has only one unified non-terminal for every translation rule. While the usage of the unified non-terminal brings freedom to generate translations with almost arbitrary structures, it also takes the risks of generating lowquality translations which has a wrong syntactic structure. In this paper, we propose tree-state models to discriminate the good or bad usage of translation rules based on the syntactic structures of the source sentence. We propose to use statistical models and context dependent features to estimate the probability of each tree state for each translation rule and punish the usage of rules in the translation system which violates their tree states. Experimental results demonstrate that these simple models could bring significant improvements to the translation quality.
منابع مشابه
Topic-Based Dissimilarity and Sensitivity Models for Translation Rule Selection
Translation rule selection is a task of selecting appropriate translation rules for an ambiguous source-language segment. As translation ambiguities are pervasive in statistical machine translation, we introduce two topic-based models for translation rule selection which incorporates global topic information into translation disambiguation. We associate each synchronous translation rule with so...
متن کاملSupertags as Source Language Context in Hierarchical Phrase-Based SMT
Statistical machine translation (SMT) models have recently begun to include source context modeling, under the assumption that the proper lexical choice of the translation for an ambiguous word can be determined from the context in which it appears. Various types of lexical and syntactic features have been explored as effective source context to improve phrase selection in SMT. In the present w...
متن کاملConstituent Reordering and Syntax Models for English-to-Japanese Statistical Machine Translation
We present a constituent parsing-based reordering technique that improves the performance of the state-of-the-art English-to-Japanese phrase translation system that includes distortion models by 4.76 BLEU points. The phrase translation model with reordering applied at the pre-processing stage outperforms a syntax-based translation system that incorporates a phrase translation model, a hierarchi...
متن کاملHierarchical Phrase-Based Statistical Machine Translation System
The aim of this thesis is to express fundamentals and concepts behind one of the emerging techniques in statistical machine translation (SMT) hierarchical phrase based MT by implementing translation from Hindi to English. Basically hierarchical model extends phrase based models by considering subphrases with the aid of context free grammar (CFG). In other models, syntax based models bear a rese...
متن کاملUsing Features from Topic Models to Alleviate Over-Generation in Hierarchical Phrase-Based Translation
In hierarchical phrase-based translation systems, the grammars (SCFG rules) have over-generation problem because we can replace the non-terminalX with almost everything without knowing the syntactic or semantic role ofX . In this paper, we present an approach that uses topic models to learn the distributions for non-terminals in each SCFG rule, based on which we further derive static features f...
متن کامل